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In the present study, we obtain an exact solution to nonsteady equations describing the 
symmetric rotational motion of an ideal fluid. The motion is interpreted as the motion of 
a cylindrical layer with free boundaries. Allowance is also made for the effect of surface 
tension in an analysis performed using a linear approximation. Asymptotes describing the 
growth of small perturbations are obtained, and numerical results are presented from calcula- 
tion of the perturbations of the free boundaries of the layer as a function of the following 
parameters: Weber number; relative thickness of the layer; wavelength of the perturbation. 

Basic Equation 

We will examine the symmetric rotational motion of an ideal incompressible fluid in 

Lagrangian coordinates [ i] : 

V ~ r 
rtt  7 + - ~  (Z;Pn - -  znp:) = O, zt t  - -  ---q- ( r~pn - - rnp~)=O,  ( 1 ) 

r (rnz ~ - -  r~zn) = r I. 

H e r e ,  ~ = r ( ~ ,  ~, 0 ) ;  ~ = z ( ~ ,  ~, 0 ) ;  t i s  t i m e ;  p i s  p r e s s u r e ;  V(~,  ~) i s  t h e  s q u a r e  o f  t h e  
i n i t i a l  d i s t r i b u t i o n  o f  t h e  a n g u l a r  momentum o f  a f l u i d  p a r t i c l e  a b o u t  t h e  z a x i s ;  t h e  f u n c -  
t i o n  Y i s  a s s i g n e d .  The d e n s i t y  o f  t h e  f l u i d  i s  t a k e n  e q u a l  t o  u n i t y .  

The g roup  p r o p e r t i e s  o f  s y s t e m  (1 )  we re  s t u d i e d  in  [ 2 ] ,  where  t h e  a u t h o r s  d e r i v e d  s p e c i a l  
f o rms  o f  c l a s s i f y i n g  f u n c t i o n  V(~,  ~) in  which  t h e  main  g roup  i s  e x p a n d e d .  L e t  V = V ( n ) .  
Then s y s t e m  (1)  a l l o w s  t h e  t w o - p a r a m e t e r  s u b g r o u p  <S~ + 3z,  t 3z>  [ 2 ] .  I t  s h o u l d  be  n o t e d  
that the initial conditions r = ~, z = ~, t = 0 are an invariant manifold relative to this 
subgroup. Since the variables t, n, r and p serve as invariant subgroups here, then for sys- 
tem (i) we can seek only partially invariant solutions [3] of rank 2 with a defect 1 of the 
form r = r(l], t), z = z(N, r t), p = p(~, t). In this case, we find from (i) that 

r =  2 ~]It t a ( n ) t l - l d n + c ( t )  , z = [ l + a ( n ) t ] ~ + b ( n ) t ,  (2)  

V 

w i t h  a r b i t r a r y  f u n c t i o n s  c( tL  ( c (0 )=  0), a(N), b(N), 9(t). S o l u t i o n  (2 )  can  be i n t e r p r e t e d  as  t h e  
motion of an infinite liquid cylinder [c(t) =- 0] or cylindrical layer with free boundaries 
that is rotated about the z axis and is extended in the direction of this axis. 

We set a(~) - k = const, b(D) - 0 in (2) and assume that c(t) ~ 0 [at c(t) = 0, we ob- 
tain the problem of the tension of a fluid cylinder [4]). Thus, 

r = m(~ ,  0~1, z = ~$,  m = ( l k  § c/~12)~/~, "~ = t § kt .  ( 3 )  

In this case, the cylindrical layer can be considered finite. In fact, let the region oc- 
cupied by the fluid at the initial moment of time be represented as a cylindrical layer a = 
{N, ~INi < N < Nf, 0 < $ < h}. The planes ~ = 0, r = h are impermeable walls while the cylin- 
drical surfaces N = Di,2 are free boundaries. The initial field of velocity on a has the 
form w 0 = k~, u 0 = [e'(0) - kDf]/2~, so that the constant k is determined by the initial 
velocity W = kh of the solid wall ~ = h. 

To study the evolution of the free boundaries of the cylindrical layer, we designate 
the internal radius as ri(t) and the external radius as rz(t). We then use'(3) to obtain 
ri(t) = m(~i, t)Di, r~(t) = m(~]2, t)Df, which means that 

r~(t) - -  r~(t)  = (rl~ " )1~)/~. (4)  
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Final relation (4) is the law of conservation of the volume of the cylindrical layer. As 
follows from (3)-(4), during motion the fluid keeps the form of a hollow cylinder. Mean- 
while, the solid wall ~ = 0 remains stationary. The top wall moves in accordance with the 
law z = ~h. If k > 0, then the cylindrical layer is extended along the z axis. At k < 0, 
the moving plane encounters the stationary plane during the time t = i/Ik I . If u10 is the 
initial velocity of the internal surface, then c'(0) = 2qluz0 + knl. We will assume that 
c'(0) = 0, so that motion is determined only by the constant k = W/h - the initial tension 
or compression along the z axis. At k = 0, c'(0) ~ 0, we obtain the plane flow of a ring. 
This problem was studied in [4, 5]. 

Let o I and 0 2 represent the values of surface tension on the internal and external sur- 
faces. We can use the dynamic condition on the boundaries p(r2(t) , t) - p(rl(t) , t) = oi/ 
r1(t) + o2/r2(t) and Eqs. (2), (4) to find a second-order ordinary differential equation for 
the function c(t). Instead of c(t), it is convenient to introduce the new function g = 1 + 
~2~c and change over to the variable ~ = (i + kt) 2 = T 2 in place of t. Then the above equa- 
tion in g(~) has the form 

,2 I )+ 38 

(g _ + dy + + = O, g (t) = 5, g' ( t ) = 0 ,  ( 5 )  

where e = ( ~ 2 / q l )  2 - 1 > O; Sj = o j / ~ k  2 ( j  = 1, 2) r e p r e s e n t  t h e  Weber numbers ( a s  n o t e d  
above ,  t h e  d e n s i t y  o f  t h e  f l u i d  i s  assumed t o  be e q u a l  t o  u n i t y ) .  Using t h e  f u n c t i o n  g ( ~ ) ,  
we d e t e r m i n e  t h e  r a d i i  o f  t h e  i n t e r n a l  and e x t e r n a l  s u r f a c e s  f rom t h e  f o r m u l a s  

rl : ~ l~ - l / 4g  112, r2 = ~ l ~ - Y 4 ( g - ~ l / ~ .  ( 6 )  

In the case of potential motion of the layer, V ~ 0, and it is not hard to see from (5) 
that g(~)~1 for all ~i. More accurate calculations show that the following inequality 
is valid 

7] I12 
\1112 dg +T/I 

(7 = 4S, q-4S=~ i+s). It is clear from this that there exists ~, > i such that g(~,) = O. 

Returning to Eqs. (6), we obtain 5(t,)= O, r~(t,) =~,~[*/a$1/~ at the moment of time t,=(~,- 

l)/k, k > O. Estimate (7) can be used to show that the velocity of the internal surface in- 
k 2 1/2 creases without limit. Meanwhile, dr~/dt~ %r~l [-- in (q ~/N~)]-~/~ at r~-+O, %= N~, (3e/8) ~/~ 

This reflects the fact that a hydraulic shock - collapse of the cavity - occurs at the moment 
of the cavity's disappearance. 

Unfortunately, this motion cannot continue as the motion of a cylindrical jet during the 
time t > t,. In fact, if g = 0 at t~t,, then it is necessary to take c = -q~/~. We then 
obtain 

It is clear that this solution describes the motion, at t~t,, of a solid cylindrical jet 

with a free boundary r~(t)=[(N~--N~)/~] 1/2. In this case, ~(0=a2/r~(t) q-3(N~--N~)/8r ~. It can be 
shown that the total energy of the cylindrical layer remains finite at the moment of collapse 
but does not coincide with the energy of the jet (8) at this moment. The difference is pro- 
portional to ]im(g')~In(i ~ e/g) and is nontrivial by virtue of (7). In addition, motion in the 

cylindrical layer at t § t, increases without limit and thus does not coincide with pressure 
in the jet distribution in accordance with law (8). 

Note I. Hydrodynamic equations (i) for symmetric rotational motion are invariant under 

the transformations t' = t @ a, ~' = ]/~ ~ b(~)d, ~' = ~, r' = r, z' = z, p' ~ p with arbitrary param- 
eters, a~and d and the function b(~) [2]. Having set a = -t,, b = i, d = -N~, we find that 
(8) reduces to the well-known solution obtained by Ovsyannikov [4] with a linear velocity 
field. 
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Fig. 1 Fig. 2 

Figure 1 shows numerically constructed relations for the dimensionless time of collapse 
kt,(s) of the cavity. Curve 1 corresponds to S~ = $2 = 0, 2toS~ = 0, i, Sz = 0, 3to S~ = 
S~ = I, while the angular moment is equal to zero [the function V(D) in Eq. (5) is equal to 
zero]. Curves 4 (V = 0.2k~y 2, S~ = i, S 2 = O) and 5 (V = 0.2k2q~y, S~ = i, S 2 = O) show 
that collapse of the cavity can also take place with zero rotation. 

Oscillatory motion of the cylindrical layer can be established when the function V(q) is 
assigned under certain conditions. Figure 2 shows graphs of the dependences of the radius 
of the internal free boundary on time t with V = 0.2k2~(i + y2), SI = 0, S 2 = I and s = 0.5, 
i, 3 (lines 1-3, respectively). An unbounded increase in internal radius is possible in 
those cases in which the inertial forces connected with rotation of the liquid about the z 
axis predominate over other forces. Such motion can be realized, for example, when S~ = 0, 
S 2 = O, V = 0.2k2N~(l + y2). 

Small Perturbation of a Cylindrical Layer 

With allowance for capillary forces, the problem of the evolution of small perturbations 
of an arbitrary potential flow of an ideal incompressible fluid has the form [6] 

div M-1M*-IV~ = O, ~ ~ ~2, t ~ 0; (9 )  

(I)t= q-~ -6}~. R -FaAr ( t )R ,  g ~ r ,  t>~0; (10)  

t 

R - -  IM*-lVf[ n- s +  M-~M*-IVq~dt , g ~ F ,  t ) O ;  (11)  
0 

q~ = 0 ,  d i v s  = 0 , % ~  Q, t = 0 .  (12)  

H e r e ,  M i s  t h e  J a c o b i a n  m a t r i x  o f  t h e  mapping  g~x(g ,  t) of  t h e  i n i t i a l  r e g i o n  f; o n t o  t h e  f l o w  
r e g i o n  f~t a t  t > 0 w i t h  e l e m e n t s  Mij = 3 x i / 3 ~  J ( i ,  j = 1, 2, 3 ) ;  M* i s  t h e  c o n j u g a t e  m a t r i x ;  
F i s  t h e  b o u n d a r y  o f  ~; f ( ~ )  = 0 i s  i t s  e q u a t i o n ;  n(~) i s ' a  n o r m a l  t o  F; F t i s  t h e  b o u n d a r y  
o f  ~ t ;  R1 and R 2 a r e  t h e  p r i n c i p a l  r a d i i  o f  c u r v a t u r e  o f  i t s  n o r m a l  s e c t i o n s ;  3 p / S n f  t i s  t h e  
derivative of pressure with respect to the normal to Ft; AF(t) is the Laplace-Belgrami oper- 
ator with the coefficients E = ]M~I~, G = I~ ~1% F = (M~, 7Ff~) ((~, ~)-+ ~(~, ~) is the regular 

parameterization of the boundary F); s(~) (~ F) is the vector of displacement of points of the 
boundary characterizing the initial perturbation of the flow region. The function R($, t) 
(~ ~ F) is the deviation of the free boundary in perturbed motion from the free boundary in 
unperturbed motion. It most clearly characterizes the effect of small perturbations on motion 
with the free boundary. 

For the potential motion of a cylindrical layer (3), the mapping ~-+ x(~, t)= (re(q, t)~1, re(q, 
t)~2 , ~) and the Jacobian matrix M permit the representation 

M = mE~ + ~qmqQ @ TE e (vt ~ = ~ -}- ~,  ~3 =- g), 

where  E 1 = d i a g ( 1 ,  1, 0 ) ;  E 2 = d i a g ( 0 ,  0, 1 ) ,  w h i l e  t h e  e l e m e n t s  o f  t h e  m a t r i x  Q a r e  e q u a l  
~ i ~ j / q  2 ( i ,  j = 1, 2) and 0 a t  o t h e r  v a l u e s  o f  i ,  j .  S i n c e  QE 2 = 0, Q2 = Q, EzE2 = 0,  we 
obtain the following expression for the inverse matrix M -I 

i E I El__ Tqm~Q q - - T  2. M -~ =_-~ 

Considering that M = M*, QV(D = (~i, ~2, 0)dP~/q after completing certain transformations we can 
use (9) to obtain the following equation for the function #(D, 8, ~, t) 

11 '2- , ~l  ~ 
(IOnn dr- (q2 q_ ze) q ~ (]])60 v ~b$~----O (13)  

w i t h  (q, O, ~ ) ~ - Q  = {q, < n  < n 2 ,  0 ~ < 0 ~ < 2 ~ ,  O <  r  
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In the transformation of boundary condition (Ii), it is necessary to take o = o I at 
q = ql, o = 02 at D = ~2. We introduce the notation mj(t) = m(Dj, t) (j = i, 2) since the 
parameterization of the free boundaries Fj(~ = Dj) is i(0, ~) = (Nj cos0, Dj sin~, r then 

=O~m~) ~-, G=~-, f = O ,  Sr~(t) R =  l s 4 ~ 
(~m~)~ oO ~ o~ z" 

Then the equation of the free boundaries Fj is f = $2 + $2 2 - qj = 0. This in turn means that 

BT=§ -~, [V/I/IM*-~V/i ~ I/~m], n7 = ~(~, ~, 0)/NT. Also, we find from (2)-(3) and 
(ii) that 

0p 
- -  • (~1 = rl~); (14) 

OnF t 

1 s ~  "~m~q)ndt Ol=~l~), s ~ s . n ~  ( ] = 1 , 2 ) ,  (15) 
0 

leads to the relations while boundary condition (ii) 

where the top sign corresponds to j = 1 and the bottom sign to j = 2. 

Since the perturbation of velocity is determined from the formula [6] 

U = M * - I V ~ ,  (17) 

the condition of nonflow through the solid walls ~ = 0, ~ = h is equivalent to 

�9 ; = 0  (~ = 0 ,  ~ = h ) .  (18) 

Thus, to analyze the behavior of small perturbations of a cylindrical layer of fluid, it 
is necessary to find the function ~(D, e, r t) as the solution of initial boundary-value 
problem (13), (16), (18), (12) and then calculate RJ(t) = Rln=nj usSng Eq. (15). 

It should be noted that in the case o I = o~ = 0, in accordance with (14)-(15) 8p/3nFt < 
0 at n = qj. Thus, problem (13), (16), (18), (12) is correctly formulated [7]. When o I > 0, 
o 2 > 0, it is correctly formulated in accordance with Adamar's results, regardless of the 
value of 3p/3nFt [6]. 

Construction of Perturbed Motion and Its Asymptotic Analysis 

We note that the variables (D, ~), 0, ~ in problem (13), (16), (18) are separated. 
With allowance for Eqs. (18), we write 

A f t e r  i n s e r t i n g  (19) in to  (13) ,  we o b t a i n  an equa t i on  fo r  A(q, t )  ~ Ant(n,  t ) :  

[ ~ n2q ~ ] 
B 2 - ~ c  An - ~ A = 0  ( 2 0 )  

(q = n~ /h ) ;  i t  can be proven t h a t  i t s  g e n e r a l  s o l u t i o n  has the  form 

wi th  a r b i t r a r y  f u n c t i o n s  B ~ ( t ) ,  B2( t )  (IX, K x a re  mod i f i ed  Besse l  f u n c t i o n s  of  the  f i r s t  and 
second k i n d s ) .  

Let 

N j =  a j - T ~  ~2m~Andt 1 (~=~1~), 
1 

(22) 

where aT------a.~,~ are coefficients of the Fourier series of the initial displacements of the 
surface sj (8, ~). We also introduce the new functions Aj (x) = A (Nj, t)/k~ and designate 
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a =&#=zO,~ =0 

2 2 = 1  

1 1 

j -~=2 ~ )=3 / 

r c 

Fig. 3 

q 2 , " K P q t 2 i Tc)112] .  i, = I~ [-gTg (~b -v xc )'l" ], g, = a[-g/y.,t~,~- 

With q a 0, we f i n d  f rom (21)  t h a t  

kn~ r[ eft .  e k e )  A ( / ,  dKx dS~ ~ A ] 

A f t e r  i n s e r t i n g  t h e  r e s u l t i n g  e x p r e s s i o n s  i n t o  (16)  and ( 2 2 ) ,  we o b t a i n  a s y s t e m  o f  f o u r  
first-order ordinary differential equations: 

d* - -  - - "  ~ m a k @ @ l 2Vfi 

2 e dN~ T, m 2 dN l __ "r, ra 1 t 

(23)  

(2a)  

r d q  (x) ~s x (.)~. r-~-. 

v, g,~(g+e) 

the function g being the solution of Cauchy problem (5) with V ~ 0. 

To construct the perturbed motion, we add the following initial conditions to the system 

AI(I ) = d2(t ) ----- 0, NI(I  ) = a j~ l l ,  N2(t) = a,}'q> (25)  

The amplitudes of the deviations of the free boundaries are determined very simply from 
the known functions N~, N2: 

~ .  m~ (~). (26)  
Trn 1 

For two-dimensional perturbations, when q = O, Eq. (20) has the form 

A = Bl(t)(r l  ~- + "cc) x/'~ + B2(t)0] z -7 ~cc) -~/2.  

Only t h e  e q u a t i o n s  f o r  N ~ ( x ) ,  N2(x)  change  in  t h i s  c a s e :  i n s t e a d  o f  ( 2 4 ) ,  we w i l l  h a v e  
the equations 

d N  2 

d~ 

Of c o u r s e ,  we s h o u l d  p u t  q = 0 (~1 = O) in  Eqs.  ( 2 3 ) .  

Finally, for purely radial perturbations (X = 0, q = 0), 
A = B1(t) in(q 2 + ~c) + B2(t) and for N~, N 2 we have 

dN 1 2"~ dN 2 _ 2"~ 

Here, in Eqs. 

d'~ - -  A t\g + e] + A,  - -  2A~ , 

- a V - 7 ~ L - ~ - k t g ~ - - j ~ ]  -~-t--7--] l"~J > A - t g + e ;  - -  " 

the solution of Eq. 

d* ln(l  + e/g) ( A 1 - A 2 ) '  dr ~/1 + e ln ( i  + e/g) 

(23)  i t  i s  n e c e s s a r y  t o  p u t  X = 0,  q = 0. 

(A I - -  A2) .  

(27)  

(20) is 

(28)  
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2- .~=0 V _  ' 

6 =8,~=;'O~r/=O 2- 

2 J .~ = 0 j 2 I'0 

, .  ..~"l, - I -  

1 i 
~0 f,2 7,4 1,6 ./u - 2  

Fig. 4 

2 

3 = 2  _~ A=3 

Fig. 5 

The coefficients of system (23)-(24) are regular everywhere except for the point �9 = 
�9 , = i + kt,, at which g(~,) = 0. There are logarithmic singularities at this point. For 
example, as g § 0 

m l r ~  38T m 2 ~  ,~, 38  

x m  1 ~ 4 g ~ l n g ,  Tm 2 4 1 / T - ~ g l n 2 g  " 

The presence of such singularities makes it difficult to find the asymptotic expansion of the 
solution of problem (23)-(24) in the neighborhood of the singular point T = T,. Nevertheless, 
such an expansion can be obtained by means of different substitutions. This analysis requires 
a great deal of calculation, and only its results are presented here. 

Let S~ = S 2 = 0 represent inertial collapse of the layer. It turns out that there are 
different cases I > I, I = i, I = 0. Omitting the intermediate calculations, we present the 
asymptotes of the amplitudes of the functions R l, R 2 at r1(t) § 0, when t + t,. Specifically, 

~ , ~ ] >  t;  ( 2 9 )  

k = l; (30) t , ,  , , ,  , 

R ~ ~  ,h / j  ~,~) , k = o  (31) 

with certain functions DI(~), D2(T), Da(~) bounded at ~ § T.:~. Thus, the internal surface is 
always unstable in the case of collapse. As regards the external surface, for all %,~ 0 

[-- Ir'-U /I 
Thus, this surface is stable in the case of collapse. It should be noted that at I > I, R~I 
behaves as in the case of the compression of a ring of fluid [5]. The given asymptote is 
also independent of whether the initial perturbations are related to potential or curl. When 
I = i, three-dimensional perturbations somewhat alleviate the instability but do not eliminate 
it completely (for the ring, R~ ~ D2(T)[--in(rl/ql)] s/2 [5]). 

Effect of Capillarity 

Let S I ~ 0, S 2 ~ 0 in systems (5), (23). It can be shown that in this case the prin- 
cipal terms of the asymptote for R~I, R~I at any fixed I, q coincide with (29)-(32). Thus, 
the internal surface is unstable during collapse, but for sufficiently high harmonics with 

i \ ~-~--i / or q >> -- In at r Z § 0 capillary forces restrict the 

growth of the perturbations I i Rnl I < ~, t + t,. 

Note 2. When q = 0 (plane perturbations) or I = 0, q = 0 (radial perturbations), the 

asymptotes coincide with (29)-(32). 
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Figures 3-5 show the results of calculations of the amplitudes of perturbations of the 
i 

boundaries of a cylindrical layer. In all of the figures, curve 1 corresponds to Rnl, while 
2 curve 2 corresponds to Rnl. Line 3 describes the behavior of the radius of the internal 

cavity r l, p, = (i + kt.~) 2, s = 8, S I = S 2 = I0. Figure 3 shows the behavior of two-dimen- 
sional perturbations (23), (27) with % = i, 2, 3, while Fig. 4 shows the characteristic 
curves for radial perturbations (23), (28). Figure 5 illustrates the behavior of perturbations 
at the free surfaces of the layer with q = i, I = 0, i, 2, 3. The numerical curves that were 
constructed confirm the asymptotic results of the previous section - the internal surface is 
unstable during collapse, while the perturbations on the external surface die out. 

i. 

2. 

3. 

4. 

5. 

6. 

7. 
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EFFECT OF THE CHOICE OF CREEP INSTABILITY CRITERION ON THE SOLUTION OF 

THE PROBLEM OF OPTIMIZING ROD-SHAPED STRUCTURES 

M. N. Kirsanov UDC 539.376 

There are several approaches to evaluating the stability of a structure under creep 
conditions [i]. Uncertainty in the selection of a criterion of instability is an obstacle 
to the exact formulation of the problem of optimizing rheological systems. None of the exist- 
ing solutions [2, 3] combine the results of solution of the problem for different approaches~ 
Such a combination is lacking despite the fact that these approaches differ significantly in 
regard to their value for predicting the critical time. 

The goal of the present study is to evaluate the effect of the choice of instability 
criterion on the solution of the optimization problem. We will examine so-called conditional 
criteria [4]. We present the equations of the problem of the maximum of the critical time 
for an arbitrary rod-shaped structure, and we use a specific example to determine the con- 
dition of the minimum of volume for a fixed critical time. It is shown that the choice of 
criterion has no effect on the optimum form of the system in the first case and that the 
effect is negligible in the second case. 

We will assume that the material of the rod obeys the creep law [5] 

p;~ =/(~) (i) 

(p = e - o/E is the creep strain; ~ is the strain-hardening parameter). Analyzing variants 
of conditional instability criteria for creep, we note that for most of them the critical 
strain for a compressed rod can be represented in the form 

p = ~(Oo- -  o) /E,  (2) 
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